欠缺动力电池研究 中国电动汽车“弯道超车”难(2)
来源:第一电动网 作者:综合报道 时间:2015-11-14 08:26 点击:次
众所周知,锂电池的电解质只是锂离子的导体,不能储能。锂电池的电解质也不会是“金属混合物”,因金属不可传导离子。液态的电解质改变为固态电解质,如使用的电解质总量不变,也不可能提高电池的能量密度。仅仅是减少绝缘层和其他安全措施而降低的非储能材料的重量是有限的,因而由此提高的能量密度也不会多。
Sakti3已经吸引到了来自知名企业的投资,比如通用汽车。QuantumScape也是一家固态电池技术公司,但他们的技术据传和Sakti3较为类似。其实,采用高能存储材料才是Sakti3电池的关键:有报导“Sakti3弃用了传统锂电池中的可燃液体电解质,通过其高能存储材料实现技术进步”,使“Sakti3研发的电池能量密度达到每升1000瓦时,这是目前普通锂电池的两倍”。
从照片中可以看到,Sakti3超薄电池单体是长×宽约200×100mm2的矩形薄片,厚度约1mm,电池两表面已制备有有金属光泽的电极,估计为铝箔。
Sakti3使用的“高能存储材料”是什么材料,固体电解质是什么材料众所周知,目前已知的可用于电池的“高能存储材料”只有锂硫化合物和锂硅化合物两类。当电极箔表面分别制备锂硫化合物膜和锂硅化合物膜作正极和负极,采用能够供锂离子迁移的膜作电解质,即可成为单体电池。
目前国内外研究的锂硫化合物和锂硅化合物电池,都是按现有的电池结构制造,受制于活性层充放电膨胀脱落和负离子的流失,电池寿命短。国内外的研究者采取的解决方案,都不外乎是将存储材料外包覆保护壳后制活性层,或是将活性层制备成多层三明治型。
作者在一发明中指出:作电解质供锂离子迁移的膜,可采用导电聚合物阳离子膜。导电聚合物阳离子膜包覆于锂硫化合物或锂硅化合物膜表面,可成为防止负离子流失的保护膜,可解决电池的寿命问题。Sakti3单体电池的固态结构,有利于解决活性层充放电膨胀脱落的问题。将多个Sakti3单体电池并联即可制备得高电压的动力电池。
Sakti3的优点在于:可采用现有的涂布设备制备单体电池,也可采用3D打印制备单体电池。Sakti3的不足在于:电池电极的面积小,鉴于锂硫化合物和锂硅化合物的电子导电性和离子迁移性差,于电极膜表面制备的储能膜不能太厚,致储能膜的实际体积小、活性材料的量少。若电极和电解质膜的质量在电池中占比过大,将影响电池的储能密度。成功的关键在于采用重量极轻的电极箔和电解质膜,但更重要的还是如何增加储能膜的厚度,看来Sakti3已成功地解决了此问题。我也对找到了解决这个问题的好办法。
大众汽车“目前焦点主要聚集在将现有锂离子电池升级版方案,以及固态电池技术两个方向”,虽然没有提及具体的技术内容,估计大众的固态电池应与Sakti3类似。
但是,还有一种固态电容器也可用于电动汽车作高密储能器。《三种改变世界的电池技术》一文中提到:“目前,美国能源部能源高级研究计划局就正在测试两个不同的固态电池项目,其一是锂离子固态电池,另一个则完全不使用锂。”这一“完全不使用锂”的“固态电池”作者估计就是固态电容器,因为非锂材料的储能密度小,难以成为电池的“高能存储材料”。
众所周知电容器比电池在安全性、使用寿命、充电速度和管理等方面更有优势。通用汽车瞩目的“固态电池”,其实是一种高储能密度的固态电容器。2008年通用汽车曾入股EEStor公司取得9.8%的股权。而EEStor研究的就是高储能密度的固态电容器。国内有储能权威和专业网站将EEStor电容器归于“超级电容器”类,其实EEStor电容器采用高介电常数材料储能,为标准的法拉第电容器,可按法拉第电容器原理设计。所谓“超级电容器”靠正负电极对垒储能,为非法拉第电容器。
EEStor电容器能够成为高储能密度的电容器,是因其介电质膜的介电常数达19818,膜的电场强度达350V/μm,膜的厚度可保证电容器的工作电压达3500V。按法拉第电容器原理即可计算出其储能密度,EEStor号称达280Wh/kg。中科院也对此类电容器进行了研究,所制备的介电质膜的介电常数比EEStor更高。但是至2009年后已无EEStor的新报道,有传是奥巴马下令将此技术列入了美国国家机密。
单体EEStor电容器的外形与Sakti3电池相类似,结构为两电极间夹一薄层介电质层。因单体电容器的工作面积小,需将多个单体电容器并联才能得到大储能量,致制备复杂;另外,EEStor电容器设计于3500V电压工作,用于电动汽车存在安全隐患。EEStor介电质膜的材料为560nm粒度的高介陶瓷粒,用4%聚脂粘结成膜,高介陶瓷粒是氧化铝包覆的钛酸钡,对材料的纯度要求达5个9,制备复杂。
本人研究了一种新型高介电常数材料,可制备介电常数高达105的膜。材料制备简便、成本低,已申请发明专利。作者的一个专利还解决了制备大比表面积电容器的难题。因膜的介电常数远高于EEStor介电膜,当采用作者研究的电极制备储能密度高达400Wh/kg的电容器时,电容器工作电压可小于100V,使电容器更适合于作电动汽车的动力储能器。
总结
采用何种技术可大幅提升电池能量密度即通常所问的“超级电池”在哪里作者认为,液流电池可用于新能源发电和电网,但不宜用于电动汽车。能用于电动汽车的“革命性突破”的“超级储能器”,只有采用“高能储存材料”大电流工作储能器,或可高电压工作的储能器。高能储存材料锂硫化合物和锂硅化合物制备的固态电池,可称为“超级电池”,而高能储存材料中的高介电常数材料制备的高储能密度固态电容器,因已有正负电极对垒的非法拉第电容器在先称为“超级电容器”,我们只好将其称为“高密薄膜电容器”,以资与传统低密度储能的薄膜电容器相区别;而高工作电压的高储密度能的“超级电容器”,则称为“高密超级电容器”,以资与储能密度小的“超级电容器”相区别。